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Abstract We determine the limit sets of a system modelling suicide substrate kinet-
ics, and show that a result by Tatsunami et al. (Biochim Biophys Acta 662:226–235,
1981), derived under additional quasi-steady state assumptions, holds generally.
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1 Introduction

A system of biochemical reactions is called a suicide substrate system if it involves a
substrate capable of inactivating the enzyme. Suicide substrates are of interest because
they make inactivation of specific enzymes possible. The suicide substrate mechanism
to be investigated in the present note involves substrate S, enzyme E , intermediate
complexes X , Y , inactivated complex Ei and product P . The reaction scheme is as
follows.

E + S
k1�

k−1
X

k3
⇀ Y

k2
⇀ E + P, Y

k4
⇀ Ei

This system is a modification of the Michaelis-Menten system (see Michaelis and Men-
ten [5], Segel and Slemrod [7], Heinrich and Schuster [4]). There are two complexes,
viz. enzyme-substrate complex X and enzyme-product complex Y , and formation of
the second complex as well as formation of product is irreversible. Moreover, the
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enzyme-product complex may change irreversibly into an inert state Ei . Mass action
kinetics and stoichiometry lead to the four-dimensional differential equation

ṡ = −k1(e0 − x − y − ei )s + k−1x
ẋ = k1(e0 − x − y − ei )s − (k−1 + k2)x
ẏ = k2x − (k3 + k4)y
ėi = k4 y

(1)

with relevant initial conditions s(0) = s0 > 0, x(0) = y(0) = ei (0) = 0 (and
e(0) = e0 > 0, p(0) = 0). This system was discussed, among others, by Waley
[9], Tatsunami et al. [8], and Burke et al. [2]. The biologically relevant questions are:
Will all of the substrate be converted in the process, and will all of the enzyme be
inactivated? Tatsunami et al. assumed quasi-steady state for both complexes X and Y ,
and then applied the customary QSS reduction method to obtain a two-dimensional
system. They concluded that under this condition all of the substrate will be converted
if and only if

k4s0 ≤ (k3 + k4)e0, (2)

while all enzyme will be inactivated if and only if the reverse inequality holds. Burke
et al. employed a more intricate analysis, involving scaling procedures and discussed
the short-time and long-time dynamics of the system under the assumption of a small
parameter introduced by Segel and Slemrod [7]. Essentially the same derivation is
also presented in Murray [6], Subsection 6.4.

In the present note we will show that the result by Tatsunami et al. [8] holds true
without any quasi-steady state hypothesis, and without invoking any assumption on
small parameters. The main result will be stated precisely in the following section,
and the proof will be given in the Appendix.

2 Main result

The crucial observation is that the four-dimensional system (1) admits the linear first
integral

φ = s + x + y + k3 + k4

k4
ei ,

as is easily verified. This first integral is not induced by stoichiometry and seemingly
was not noticed in [2,6,8], . Thus one obtains reduction to a three-dimensional system

ṡ = −k1(e0 − x − y − k4
k3+k4

(s0 − s − x − y))s + k−1x

ẋ = k1(e0 − x − y − k4
k3+k4

(s0 − s − x − y))s − (k−1 + k2)x
ẏ = k2x − (k3 + k4)y.

(3)
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For this system singular perturbation methods do not seem helpful and actually their
applicability seems questionable (see the arguments in [3]). However, a qualitative
analysis will provide a complete understanding of the system’s long-time behavior.

Theorem 1
(a) System (3) always admits the stationary point P1 = (0, 0, 0) in the positive orth-

ant P = {(s, x, y) : s ≥ 0, x ≥ 0, y ≥ 0}. There is a second stationary point in
P, viz. P2 = (s0 − k3+k4

k4
e0, 0, 0) if and only if condition (2) does not hold.

(b) Every solution starting in P converges to P1 as t → ∞ if and only if condition
(2) is satisfied.
If k4s0 > (k3 + k4)e0 then every solution starting in P but not on the line
Z := {(s, x, y) : s = x = 0} converges to P2 as t → ∞. Solutions starting on
Z converge to P1 as t → ∞.

We briefly note the biological interpretation: Our analysis supports the conclusion
of Tatsunami et al. [8]: All substrate is converted (thus s → 0 as t → ∞) if and
only if k4s0 ≤ (k3 + k4)e0. In this case ei → k4

k3+k4
s0 as t → ∞. On the other hand,

all enzyme is transformed to inert state (thus ei → e0 as t → ∞) if and only if
k4s0 ≥ (k3 + k4)e0, and in this case s → s0 − k3+k4

k4
e0 as t → ∞. However, we show

that this result holds for arbitrary rate constants and initial concentrations, without any
quasi-steady state assumptions or restrictions. Therefore it reflects a universal property
of the reaction scheme.
One should clarify why the analysis by Tatsunami et al. [8] arrives at the same result.
This is due to the correspondence between stationary points of the full system and of
the reduced system in [8], which is a general feature of the standard QSS reduction
method. In the particular scenario under consideration there is also a simultaneous
stability exchange for stationary points in the full and the reduced system.

3 Appendix: Proof

(i) Part (a) follows from a straightforward computation.
(ii) The limit sets of system (3) in the positive orthant P can be determined from the

following observation: The functionψ(s, x, y) := s + x + y has Lie derivative
(orbital derivative) equal to −(k3 + k4)y, and therefore ψ is a Lyapunov func-
tion on the positive orthant. This shows that solutions are confined to compact
sets

{(s, x, y) ∈ P : ψ(s, x, y) ≤ const.}

and in particular all limit sets in P are nonempty and connected. By LaSalle’s
criterion (see e.g. Amann [1], Theorem 18.3 and Corollary 18.4), all limit sets
are contained in the subset Y given by y = 0. Next we use the fact that limit
sets are also invariant sets, and consider solutions

⎛
⎝
σ(t)
ξ(t)

0

⎞
⎠
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of (3) that remain in Y for all t . Substitution into the third entry of the differential
equation yields ξ = 0, and furthermore ξ̇ = 0 implies the identity

k1

(
e0

k4

k3 + k4
(s0 − σ(t))

)
· σ(t) = 0.

Therefore σ is constant and equal to the entry of a stationary point in P. By
connectedness, every limit set is either equal to {P1} or to {P2}, and this implies
that every solution converges to a stationary point. If condition (2) holds then
P1 is the only stationary point in P, and therefore every solution in P converges
to P1.

(iii) We assume from now on that (2) does not hold, and investigate the stability of
P1. The Jacobian at P1 is given by

⎛
⎝
α k−1 0

−α −(k−1 + k2) 0
0 k2 −(k3 + k4)

⎞
⎠

with α := −k1e0 + k1k4
k3+k4

s0 > 0, since (2) does not hold. The negative eigen-
value −(k3 + k4) of this matrix can be read off directly; the corresponding
eigenspace is just the axis Z . There remain the eigenvalues of

B :=
(
α k−1

−α −(k−1 + k2)

)

with α > 0. Since the determinant of B is negative, B has real eigenvalues of
opposite signs. Let β be the negative eigenvalue of B, and

v =
⎛
⎝
v1
v2
v3

⎞
⎠

a corresponding eigenvector of the Jacobian. Then the equations

(
α k−1

−α −(k−1 + k2)

) (
v1
v2

)
= β

(
v1
v2

)

show that v1 and v2 are both nonzero and have different signs. To summarize:
The stable subspace W of the Jacobian at P1 has dimension two and is spanned
by

⎛
⎝
v1
v2
0

⎞
⎠ and

⎛
⎝

0
0
1

⎞
⎠ .
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(iv) By the stable manifold theorem (see e.g. Amann [1], Proposition 19.10 and
Theorem 19.11), there is a neighborhood Ũ of 0 in R

3 and a two-dimensional
submanifold M ⊆ Ũ with 0 ∈ M , tangent to W in 0, with the property that
every solution converging to P1 as t → ∞ has non-empty intersection with
M . Since the axis Z defined by s = x = 0 is obviously an invariant set of
(3), and every solution starting on Z converges to P1 as t → ∞, this axis is
contained both in W and (locally) in M . Moreover one has W ∩ P = Z , since
v1 and v2 have different signs. Now an elementary argument shows that there
is a neighborhood U ⊆ Ũ of 0 such that

U ∩ M ∩ P = Z ∩ U.

(v) From (iv) one sees that every solution in P which converges to P1 as t → ∞ is
contained in the axis Z . Since every solution in P \ Z converges to some sta-
tionary point, the only remaining possibility is convergence to P2, as asserted.
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